
Integration Partners &

Applications

SAT-200 INTEGRATION

It’s as easy as A, B, C

The GSM / GPRS modem is a highly flexible plug and play
modem for direct and easy RS232 integration. The
Microprocessor can either be a stand alone product or part of the

integrated GSM / GPRS or other Sensor solution.

How does it work?

A – Programme the Microprocessor to interface with the device

using RS232 protocols

B – Programme the SAT-202 using the scripting SDK

C – Connect the SAT-202 using the RS232 cable

What do I need?

A – SAT-202 User manual to determine the pin connections

B – Global Tracking GDN 0559 – Scripting & API Command

Interface.

 MM Command – to build an 84 bit message to send to the
Global Tracking Message Handling System

 MR Command – to see if the terminal has a channel & the

channel quality i.e. can it see the satellite

 MT Command – to check if the message has been sent

C – Global Tracking SDK application and up-loader software – to

programme the terminal with your bespoke functions

What is the Message Content?

A – The Message Payloads (84 bits) are as follows:

Periodic report

 Message type 8 bits (0x20 for periodic report)

Satellite Modem

GSM / GPRS Modem

or Sensor Device

Microprocessor

RS232

RS232

SAT-202

 Message count 4 bits (rolling number, incremented at each transmission)

 Latitude 21 bits

 Longitude 22 bits

 Speed 8 bits

 Heading 4 bits

 GPS status 1 bit

 Scratchpad 7 12 bits (least significant 12 bits of scratchpad 7 register)

 Control bits & 4 bit

Checksum

Sensor report

 Message type 8 bits (0x21 for sensor report)

 Message count 4 bits (rolling number, incremented at each transmission)

 Scratchpad 7 12 bits (least significant 12 bits)

 Scratchpad 8 32 bits

 Scratchpad 9 16 bits (least significant 16 bits)

 Scratchpad 10 8 bits (least significant 8 bits)

 Control bits & 4 bit

Checksum

B – The scratchpad registers are written to by the microprocessor and the integrator

should determine what the most appropriate data should be.

C – To assist in this process the SAT-Manager and/or Uploader are available on the

support site:

http://support.satamatics.com/doc/portal/technical?action=technical&cat=program&srt=date&nam=So

ftware%20Releases

What are the basic Data Transfer Protocols?

A – To send data to our SAT-202 terminal, Information/parameters from the
microprocessor are to be written (via serial interface commands) to scratchpad registers
within the satellite terminal (SAT-202).

B – Data transfer handshake

 The SAT-202 will set a bit (RDY) in scratchpad register 6 to a 1 to indicate it is

ready to receive data.

 The microprocessor will read RDY and send updated information when RDY is 1.

Scratchpad registers 7 to 14 are available for writing information to. All

scratchpad registers are 32 bits.

 At the end of the transfer, the microprocessor needs to write zero to scratchpad

register 6, resetting RDY to 0.

 With RDY=0, the SAT-202 will process the data from the microprocessor and

transmit via satellite.

 The SAT-202 will set RDY to 1 when it is ready to receive more data.

http://support.satamatics.com/doc/portal/technical?action=technical&cat=program&srt=date&nam=Software%20Releases
http://support.satamatics.com/doc/portal/technical?action=technical&cat=program&srt=date&nam=Software%20Releases

C – Serial Commands

The Serial Interface is 9600, n, 8, 1. Commands to the SAT-202 are ASCII characters.

The SAT-202 echoes all commands, replacing the initial upper case command

characters with lower case. Echoed responses always end in <LF><CR>. Commands

to the terminal should wait for a response to be echoed before another command is

sent.

To write to a scratchpad register use:

 RW 06 nn hhhhhhhh<CR>

 Where:

nn = 2 character ASCII hex representation of the register number.

hhhhhhhh = 8 character ASCII hex representation of the 32 bit value to be

stored in the register.

Example: RW 06 1F 1234ABCD <CR>

The terminal will respond with: rw 06 1F 12345ABCD<LF><CR>

To read a scratchpad register use:

 RR 06 nn?<CR>

 The terminal will respond with: rr 06 nn hhhhhhhh<LF><CR>

Tech Note:
3 easy steps to understand and control your RS232 devices

Step 1: Understand RS-232 Connections & Signals
DTE and DCE
DTE stands for Data Terminal Equipment. A computer is a DTE. DCE stands for Data
Communication Equipment. A modem is a DCE.
DTE normally comes with a Male Connector, while DCE comes with a Female Connector.
However, that is not always true. Use the simple way below to confirm:

Measure Pin 3 and Pin 5 of a DB-9 Connector with a Volt Meter, if you get a voltage of -3V
to -15V, then it is a DTE device. If the voltage is on Pin 2, then it is a DCE device.
Note: The result for a DB-25 Connector is reversed (Please refer to DB-9 to DB-25
conversion table below).

RS-232 Pinouts (DB-9)

A male DB-9 connector viewed from the
front. Reverse or back view of male

connector for Female Connector.

DTE Pin Assignment (DB-9) DCE Pin Assignment (DB-9)

1 DCD Data Carrier Detect 1 DCD Data Carrier Detect
2 RxD Receive Data 2 TxD Transmit Data
3 TxD Transmit Data 3 RxD Receive Data
4 DTR Data Terminal Ready 4 DSR Data Set Ready
5 GND Ground (Signal) 5 GND Ground (Signal)
6 DSR Data Set Ready 6 DTR Data Terminal Ready
7 RTS Request to Send 7 CTS Clear to Send
8 CTS Clear to Send 8 RTS Request to Send
9 RI Ring Indicator 9 RI Ring Indicator

DB-9 to DB-25 Conversion

DB-9 DB-25 Function
1 8 DCD Data Carrier Detect
2 3 RxD Receive Data
3 2 TxD Transmit Data
4 20 DTR Data Terminal Ready
5 7 GND Ground (Signal)
6 6 DSR Data Set Ready
7 4 RTS Request to Send
8 5 CTS Clear to Send
9 22 RI Ring Indicator

RS-232 Connections
A straight-through cable is used to connect a DTE (e.g. computer) to a DCE (e.g. modem),

all signals in one side connected to the corresponding signals in the other side in a one-to-
one basis.

A crossover (null-modem) cable is used to connect two DTE directly, without a modem in
between. They cross transmit and receive data signals between the two sides and there are

many variations on how the other control signals are wired, below is one of them:

Straight-through (DB-9) Crossover (Null-Modem) (DB-9)

(DTE) (DCE) (DTE) (DTE)

1 DCD ------- DCD 1 1 DCD DCD 1

2 RxD ------- TxD 2 2 RxD ------- TxD 3

3 TxD ------- RxD 3 3 TxD ------- RxD 2

4 DTR ------- DSR 4 4 DTR ------- DSR 6

5 GND ------- GND 5 5 GND ------- GND 5

6 DSR ------- DTR 6 6 DSR ------- DTR 4

7 RTS ------- CTS 7 7 RTS ------- CTS 8

8 CTS ------- RTS 8 8 CTS ------- RTS 7

9 RI ------- RI 9 9 RI RI 9

 Null-Modem (Model: CVT-Null-1)

RS-232 Signals

 RS-232 Logic Waveform (8N1)

The graphic above illustrates a typical RS-232 logic waveform (Data format: 1 Start bit, 8
Data bits, No Parity, 1 Stop bit). The data transmission starts with a Start bit, followed by
the data bits (LSB sent first and MSB sent last), and ends with a "Stop" bit.

The voltage of Logic "1" (Mark) is between -3VDC to -15VDC, while the Logic "0" (Space) is
between +3VDC to +15VDC.

RS-232 connects the Ground of 2 different devices together, which is the so-called
"Unbalanced" connection. An unbalanced connection is more susceptible to noise, and has a

distance limitation of 50 ft (which is around 15 meters).

Step 2: Learn about the Protocol
A protocol is one or a few sets of hardware and software rules agreed to by all
communication parties for exchanging data correctly and efficiently.
Synchronous and Asynchronous Communications
Synchronous Communication requires the sender and receiver to share the same clock. The
sender provides a timing signal to the receiver so that the receiver knows when to "read"
the data. Synchronous Communication generally has higher data rates and greater error-
checking capability. A printer is a form of Synchronous Communication.

Asynchronous Communication has no timing signal or clock. Instead, it inserts Start/Stop
bits into each byte of data to "synchronize" the communication. As it uses less wires for

http://www.commfront.com/RS232_Protocol_Analyzer_Monitor/RS232_Cable_Accessories.htm

communication (no clock signals), Asynchronous Communication is simpler and more cost-
effective. RS-232/RS-485/RS-422/TTL are the forms of Asynchronous Communications.

Drilling Down: Bits and Bytes
Internal computer communications consists of digital electronics, represented by only two
conditions: ON or OFF. We represent these with two numbers: 0 and 1, which in the binary
system is termed a Bit.

A Byte consists of 8 bits, which represents decimal number 0 to 255, or Hexadecimal

number 0 to FF. As described above, a byte is the basic unit of Asynchronous
communications.

Baud rate, Data bits, Parity, and Stop bit

 RS-232 Logic Waveform (8N1)
The baud rate is the communication speed that measures the number of bit transfers per
second. For example, 19200 baud is 19200 bits per second.

Data bits are a measurement of the actual data bits in a communication packet. For
example, the above graphic shows eight (8) data bits in a communication packet. A
communication packet refers to a single byte transfer, including Start/Stop bits, Data bits
and Parity. If you are transferring a standard ASCII code (0 to 127), 7 data bits are
enough. If it is an extended ASCII code (128 to 255), then 8 data bits are required.

Parity is a simple way to error-check. There are Even, Odd, Mark and Space indicators. You
can also use no parity. For Even and Odd parity, the serial port sets the parity bit (the last
bit after the data bit) to a value to ensure that the data packet has an Even or Odd number

of logic-high bits. For example, if the data is 10010010, for Even parity, the serial port sets
the parity bit as 1 to keep the number of logic-high bits Even. For Odd parity, the parity bit
is 0 so that the number of logic-high bits is Odd. Mark parity simply sets the parity bit to
logic-high and Space sets the parity bit to logic-low, so that the receiving party can
determine if the data is corrupted.

Stop bits are used to signal the end of a communication packet. This also helps to
synchronize different clocks on the serial devices.

Handshaking (Flow Control)
Handshaking is also called "Flow Control". The main purpose of Handshaking is to prevent
receiver overloading. By using Handshaking signals, receivers will be able to tell the sending

device to pause data transmission if the receiver is overloaded. There are three types of
handshaking: Software handshaking, Hardware handshaking and Both.

Software handshaking uses two control characters: XON and XOFF. The receiver sends

these control characters to pause transmitter during communication. XON is decimal 17 and
XOFF is decimal 19 in the ASCII chart. The drawback of Software handshaking is that these
two control characters can not be used in data. This is quite important when you are
transmitting Binary data as you might need to use these two codes in your data.

Hardware handshaking makes use of actual hardware lines, such as RTS/CTS, DTR/DSR,
and DCD/RI (for modem).

In DTE/DCE communication, RTS (Request to Send) is an output on the DTE and input on
the DCE. CTS (Clear to Send) is the answering signal coming from the DCE. Before sending

a data, the DTE asks permission by setting its RTS output to high. No data will be sent until
the DCE grants permission by using the CTS line.

The DTE uses the DTR (Data Terminal Ready) signal to indicate it is ready to accept
information, whereas the DCE uses the DSR signal for the same purpose. DTR/DSR are
normally ON or OFF for the whole connection session (e.g. Off-hook), while RTS/CTS are ON
or OFF for each data transmission.

DCD (Data Carrier Ready) is used by the modem when a connection has been established

with remote equipment, while RI (Ring Indicator) is used by the modem to indicate a ring
signal from telephone line

Data formats (Binary, Hex, Dec, Oct, and ASCII)

Serial devices use Binary for communication, which consists of just two unique numbers: 0
and 1. Binary is the Base-2 numbering system. One byte of data consists of 8 binary digits,
from 0000 0000 to 1111 1111.

Hexadecimal is the base-16 system, which consists of 16 numbers: 0 to 9 and the letters A
to F (decimal number 15). The Hexadecimal numbering system is useful because it can
represent every byte as two consecutive hexadecimal digits, and it is easier for humans to
read Hexadecimal numbers than Binary numbers. Most of the manufacturers use

Hexadecimal in their protocol documentation. It is simple to convert a value from
Hexadecimal to Binary. Just translate each Hexadecimal digit into its 4-bit binary
equivalent. E.g. Hexadecimal number F3 equals Binary number 1111 0011.

Octal refers to the base-8 numbering system, which uses just eight unique symbols (0 to
7). Programmers often use Octal format because it is relatively easy for people to read and
can easily be translated into binary format: each Octal digit represents 3 binary digits. E.g.
Octal number 73 equals to Binary number 111 011.

Decimal refers to numbers in base 10, which is the numbering system we use most in
everyday life. It's not as easy as Hexadecimal and Octal to converter Decimal to Binary
number, but it is easier for us to understand Decimal.

ASCII (American Standard Code for Information Interchange) is a character encoding based
on the English alphabet. ASCII codes (both readable and unreadable) are widely used in
communications, such as Modem communications. Letters A to Z and numbers 0 to 9 are
readable ASCII codes. Some ASCII codes are unreadable, such as the control codes: XON

and XOFF, which are used in Software flow control.

Checksum

Many serial protocols use checksum (additional bytes added at the end of the data string)
to check the data integrity, as errors might occur during data transmission.

There are many types of checksum, from the simplest uses of it in Modula or BCC to
sophisticated CRC calculation. Using Modula as an example, we learn that before data

transmission, the sender adds all command bytes together then mod it by 255 (decimal) to
get an additional byte. This is to be added at the end of the command string. When the
receiver receives the command string, it will first check the added byte to see whether data
remain unchanged or not. If that is the case, it will accept the data, and if not, it will ask

the sender to resend the data.

Examples of protocol commands

A protocol command is a data string sent from one serial device (e.g. a Computer) to
another (i.e. a Modem). Here are some examples:

ASCII command example: ATI1<CR><LF> to query Modem manufacturer's information.
(Note: <CR><LF> are the control codes: Carriage Return and Line Feed)

Convert the command string above to Hexadecimal and it becomes:
41 54 49 31 0D 0A

Convert the command string above to Decimal and it becomes:
065 084 073 049 013 010

Convert the command string above to Octal and it becomes:

101 124 111 061 015 012

Convert the command string above to Binary and it becomes:
01000001 01010100 01001001 00110001 00001101 00001010

Step 3: Start controlling your RS-232 devices by using 232Analyzer

232Analyzer is an Advanced Serial Port (protocol) Analyzer software, which allows you to

control/debug, monitor/sniff serial devices (RS-232/RS-485/RS-422/TTL) right from your
PC.
232Analyzer is a shareware, the FREE version has some limitation but is more than enough
to test and control your serial devices. Click here to download a FREE copy.
Checksum calculation
232Analyzer comes with a Checksum calculator, which allows you to calculate the
complicated checksum byte in seconds, here is an example:

Suppose that you are controlling a projector, and the projector protocol uses xOR to get the
additional checksum byte, the command string to turn ON the projector is: "1A 2B 3C" plus

the Checksum byte. Use the following procedures to calculate the Checksum byte:

1. Select Hex as an operands format
2. Select xOr as an operator

3. Key in the command string and append a comma (,) after each byte of command code:
e.g. 1A,2B,3C,
4. Click on the "Calculate" button and you will get the result of 0D (0 is omitted)

file:///D:/cFront/CommFront%20NewWeb/RS232_Protocol_Analyzer_Monitor/RS232_Analyzer_Monitor_DOWNLOAD.HTM

Select COM port and Setup communication formats

From the toolbar (as shown above), you can choose the COM port that is connected to the

projector (i.e. Port 5), the Baud rate (i.e. 19200 bps), the Data bit (i.e. 8), the Parity (i.e.
Even) and the Stop bit (i.e. 1).

Note: After you have set up the correct communication formats (they must match with the

projector's COM port settings), click on the "Connect" button on the left to activate the COM
port.

Setup Flow control

You can set up the flow control from the window above. It could be either Software

(XON/XOFF), Hardware (RTS/CTS), Both (Software + Hardware), or None.

Control your RS-232 devices
1) Control / Monitor Line States

232Analyzer allows you to control / monitor line states of your COM ports.

1. Line states of RTS and DTR will be toggled when the respective LED is clicked, you can
use a voltage-meter to verify the changes, you should get +6V to +15V when the line state
is ON, and -6V to -15V when the line state is OFF.
2. Other line states can be monitored through the Virtual LEDs, such as RX, TX, DSR, CTS,
DCD and RI.

2) Send / Receive commands

Use the above example to control a projector (turn ON the projector), key in the complete
command string "1A,2B,3C,0D," into the Send_Command_Pane as shown above (note: You

need to add a "," sign after each command code), and then click on the "Send" button...

